山崎

渡邊

高山

笠井

久雄*1

信也*2

峯夫*3

和彦*4

応答スペクトルを用いた免震層の最大応答予測法	
- その1	既提案法の精度改善と非線形粘性ダンパーの考慮 -

免震構造 最大応答予測 応答スペクトル 非線形粘性ダンパー

1. はじめに

本報は既法¹⁾の改良の為,まず既提案法の要点を述べる。 免震層の最大変位 U_{max}を応答スペクトルより次式で求める。

$$U_{\max} = D_h \cdot S_{D(h=5\%)} \tag{1}$$

 D_h は減衰低減係数式で AIJ 式²⁾または Kasai 式³⁾, S_D は変位スペクトル, D_h には式(2)の再評価減衰定数 h_{eq} *を用いる。

 $h_{eq}^{*} = \min\{1, ({}_{P}S_{V}/V_{0,max})^{2}\}h_{eq}$ (2) ${}_{P}S_{V}$ は擬似速度スペクトル, $V_{0,max}$ は地動最大速度で, h_{eq}^{*} とすることで D_{h} のばらつきが改善した¹⁾。また着目周期を 免震周期 T_{f} としたことで, U_{max} は収束計算でなく簡易な代 数式で求まり,実地震動など不規則な応答スペクトルに対 しても従来の等価線形化法²⁾と同等以上の精度であった¹⁾。

本報では, T_f とは異なる着目周期を提案し,また新たに 地震動固有の減衰低減の周期特性も簡易的に評価する。さらに非線形粘性ダンパーによる効果を反映させるのに,そ の減衰定数 h_v を1サイクル平均履歴面積⁴⁾⁵⁾より求めること で本予測法がそのまま適用できることを示す。

検討に用いたモデルを図 1(a)に示す。積層ゴムを線形,履 歴ダンパーを完全 Bi-Linear バネ,粘性ダンパーを $F_V = CV^{\kappa}$ 型ダッシュポットとする。パラメータは $T_f = 1 \sim 10s$,履歴ダンパーの降伏せん断力係数 $\alpha_p = 1 \sim 10\%$,粘性ダンパーの150cm/sの減衰抵抗力係数 $^{6}\alpha_{v,150} = 0 \sim 7\%$, $\kappa = 0.3$ である。

本報では改良内容と非線形粘性ダンパーの考慮法を示し, 次報で様々な地震動での検証や応答予測曲線の例を示す。 2. 骨格曲線と h=5%要求曲線との交点周期 T に着目

八戸 NS での図 2(a) (着目周期=*T_f*)を見ると *T_f* 4s で予 測値が単調に増加し解析値を超えていく。また図 2(b)より *T*

4s は $_{P}S_{V} < V_{0,\max}$ となり式(2)より $h_{eq}^{*} < h_{eq}$ となる。例えば $T_{f}=6s$ のモデルは h_{eq}^{*} が $_{P}S_{V}(T=6s)$ で評価され 0.33 h_{eq} となる が, $\alpha_{p}=5\%$ の場合,実際の等価周期 $T_{eq}=3.1s$ では $_{P}S_{V} > V_{0,\max}$ なので $h_{eq}^{*}=h_{eq}$ となる。つまり T_{f} に着目では長周期に過ぎた。

そこで着目周期を,図1(b)や図2(c)に示すように骨格曲線と h=5%の要求曲線との交点での等価周期T*としてみる

正会員

同同

同

図 2 八戸 NS(50cm/s)での応答結果と予測値

と $T_f=6s, \alpha_p=5\%$ のモデルは $T^*=3.8s$ で $h_{eq}^*=h_{eq}$ となる。

 T^* に着目した予測結果を図 2(d)に示す。 $\alpha_p=2\%$ を除き T_f 6s が改善できた。 T^* も収束計算は不要で与条件から簡単 に求まる。また着目周期を適当な仮定変位での T_{eq} とするこ とも検討したが T^* とした結果との差は僅かであった。 3. 地震動固有の減衰低減の周期特性の簡易評価

再び図 2(d) (着目周期= T^*)を見ると, T_f =3sの α_p 3%で 予測値が解析値を上回っている。この原因に地震動固有の 減衰低減の周期特性を考える。図 3(a)は八戸 NS の h=5,10,20,30%での $_PS_V$ である。図 3(b)はh=5%に対する各ス ペクトル比,すなわち八戸 NS 固有の減衰低減特性 D_h '(実 線,周期に依存)とそれに対応する D_h (破線,一定値)で ある。 D_h は当該 D_h 'の平均的な値であるが周期によってば らつき,特にT=2~3s付近で D_h '< D_h , またT 4s で D_h '> D_h かつ減衰低減も僅少である。 T_f =3s, α_p =2~5%のモデルは, U_{max} 時で T_{eq} =2.8~2.3s となり, D_h '< D_h となる周期域に該当 し,予測値が大きく評価されたと考えられる。

一方,図 3(b)より $D_h' > D_h$ の相対関係は hに関わらずほ ぼ同傾向である。つまり,ある $h(=h_{ref})$ での関係を周期毎に 予め求めておき,それを計算中の D_h に適用すれば D_h' を模 擬できる。そこで式(1)の D_h を拡張した式(3)を試みる。

$$U_{\text{max}} = D_h^{P} \cdot S_{D(h=5\%)}$$

$$P = (1 - PS_{V(h,\text{ref})} / PS_{V(h=5\%)}) / (1 - D_{h(h,\text{ref})})$$
(3a,b)

図 3(c)の破線は $h_{ref}=20\%$ で求めたPによる各hの D_h^P で, それぞれの D_h に概ね対応できている。

Response Spectrum Method for Seismic Isolation Layer

(Part 1) Modification of Previously Method and Consideration of Non-Linear Viscous Damper

図 3 八戸 NS(50cm/s)の減衰低減特性とその考慮

図 3(d)は式(3)を用いた応答予測結果であり,図 2(d)に比 ベ T_f =3s の予測精度が改善されている。またこの D_h^P によ る効果は他の地震動でも確認している。ただし,式(3)を用 いる場合の U_{max} は反復計算で求める必要がある。

4. 非線形粘性ダンパーの減衰定数 h_vの考慮と D_h との対応 非線形粘性ダンパーを *F_V=CV* [×]型のダッシュポットモデ ルで扱う。これによりリリーフ機構を有し *F_V-V* 関係が Bi-Linear 型のオイルダンパーも等価則⁷⁾⁵⁾により一元的に 扱うことができる。また,不規則な地震動に対する最大応 答時の等価1 サイクルエネルギーは平均履歴面積⁴⁾で評価 でき,既報⁵⁾で次式の提案とその検証を行っている。

 $E_{V0}^{*}=\beta^{*-1} \cdot E_{V0}$, $E_{V0}=4/(1+\kappa)C(\omega U_{max})^{\kappa}U_{max}$ (4a,b) E_{V0}^{*} が求める1サイクル平均履歴面積で, β は地震動パラ メータで衝撃型:0.9~振動型:0.65程度とすればよい対応を 得る。CはV^kに対する減衰係数で $\alpha_{v,150}$ から求まる。ただし $_{PSV} < V_{0,max}$ となる場合,式4(b)の ωU_{max} は $V_{0,max}$ とする。

 $\Delta W_{P,h_{P}}$ を履歴ダンパーの, $\Delta W_{V,h_{V}}$ を粘性ダンパーのそれ ぞれ U_{\max} 時の1サイクル履歴面積と減衰定数とし,全体の 減衰定数 h_{eq} を次式で求める(W_{i} は弾性歪エネルギー)。

 $h_{eq}=h_P+h_V=1/(4\pi W_i)\cdot (\Delta W_P+\Delta W_V)$, $\Delta W_V=E_{V0}^*$ (5a,b) 図 4 は $T_f=3\sim 6s, \alpha_p=2\sim 5\%, \alpha_v=0\sim 7\%$ モデルの BCJL2 と JR 鷹取 EW での, (a)(b)は実際の 1 サイクルエネルギー E_{V0} ' と式(4)の E_{V0}^* の対応度, (c)(d)は実際の $U_{max}/_PS_{V(h=5\%)}$ と式(5) の h_{eq}^* との関係で, D_h (Kasai 式) との対応が確認できる。

図 5 は同じく a, に対する U_{max}の解析値と予測値で, 地震動で異なる応答低減傾向にも概ね対応できており,本予測法の妥当性を示唆した結果になっている。

5. まとめ

既提案の応答スペクトルを用いた免震層の簡易応答予測 法に対し,着目周期をスケルトンカーブと *h*=5%要求曲線 の交点での等価周期とし,さらに地震動固有の減衰低減効 果の周期特性を簡易評価することで精度改善を行った。

- *2 NTTファシリティーズ総合研究所 構造技術本部
- *3 福岡大学 工学部建築学科教授・工博
- *4 東京工業大学 建築物理研究センター 教授・Ph.D.

図 5 非線形粘性ダンパー(κ=0.3)による変位低減

また非線形粘性ダンパーについて,その減衰定数 h,の評 価式と,本提案法での適用性を示した。次報では様々な地震 動に対して,本提案法による予測結果の検証を行う。

参考文献

- 山崎久雄,渡邉信也,高山峯夫,笠井和彦:応答スペクトルを用いた免震層の最大応答予測法の新しい試み その 1~2,日本建築学会 大会学術講演梗概集(東海),m453-456 20129
- 大会学術講演梗概集(東海), pp.453-456, 2012.9 2) 改正建築基準法の免震関係規定の技術的背景, ぎょうせい, 2001.8
- 3) 笠井和彦,伊藤浩資,渡辺厚:等価線形化法による一質点弾塑性構 造の最大応答予測法,日本建築学会構造系論文集第571号53-62, 2003.9
- 4) 笠井和彦,小椋崇之,西村忠宗:リニア粘性要素とバイリニア粘性 要素の制振効果における等価則,日本建築学会構造系論文集 第611 号,29-37,2007.1
- 5) 酒井直己,山崎久雄,高山峯夫,笠井和彦:免震層の応答予測に用 いる非線形粘性ダンパーのエネルギー評価法 その 1~2,日本建築 学会大会学術講演梗概集(北陸),pp.235-458,2010.8 6) 酒井直己,山崎久雄,高山峯夫,笠井和彦:非線形粘性ダンパーの
- 7)小川良典,笠井和彦:バイリニア粘性要素と非線形粘性要素の等価則,日本建築学会大会学術講演梗概集(中国),pp.503-504,2008.9 用いた地震波の出典はその2に示す。

- *2 NTT FACILITIES RESEARCH INSTITUTE Inc
- *3 Prof., Fukuoka University, Faculty of Engineering, Dr.Eng.
- *4 Prof., Struct. Eng. Research Center, Tokyo Institute of Technology, Ph.D.

^{*1} ユニオンシステム(株) 振動解析総合推進室

^{*1} UNION SYSTEM INC. Dynamic Analysis Research Complex